반응형
horse와 human을 구분하는 실습.
import os
import zipfile
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import tensorflow as tf
#0. download the zip file
# https://storage.googleapis.com/laurencemoroney-blog.appspot.com/horse-or-human.zip
#1. unzip
def unzip():
local_zip = 'c:/tmp/horse-or-human.zip'
zip_ref = zipfile.ZipFile(local_zip, 'r')
zip_ref.extractall('c:/tmp/horse-or-human')
zip_ref.close()
# unzip()
#2. define each of these directories:
train_horse_dir = os.path.join('c:/tmp/horse-or-human/horses')
train_human_dir = os.path.join('c:/tmp/horse-or-human/humans')
#3. check the file names
train_horse_names = os.listdir(train_horse_dir)
print(train_horse_names[:10])
train_human_names = os.listdir(train_human_dir)
print(train_human_names[:10])
#4. know how many files
print('total training horse images:', len(os.listdir(train_horse_dir)))
print('total training human images:', len(os.listdir(train_human_dir)))
#5. set matplot parameters
# Parameters for our graph; we'll output images in a 4x4 configuration
nrows = 4
ncols = 4
#6. display 8 images
def display_images():
pic_index = 0 # Index for iterating over images
fig = plt.gcf()
fig.set_size_inches(ncols * 4, nrows * 4)
pic_index += 8
next_horse_pix = [os.path.join(train_horse_dir, fname)
for fname in train_horse_names[pic_index-8:pic_index]]
next_human_pix = [os.path.join(train_human_dir, fname)
for fname in train_human_names[pic_index-8:pic_index]]
for i, img_path in enumerate(next_horse_pix+next_human_pix):
# Set up subplot; subplot indices start at 1
sp = plt.subplot(nrows, ncols, i + 1)
sp.axis('Off') # Don't show axes (or gridlines)
img = mpimg.imread(img_path)
plt.imshow(img)
plt.show()
# display_images()
#7. modeling
def do_modeling():
model = tf.keras.models.Sequential([
# Note the input shape is the desired size of the image 300x300 with 3 bytes color
tf.keras.layers.Conv2D(16, (3,3), activation='relu', input_shape=(300, 300, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(32, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid') # one class is 'horses' and the other is 'humans'
])
#8. watch model summary
model.summary()
#9 model training with 'binary_crossentropy' loss
from tensorflow.keras.optimizers import RMSprop
model.compile(loss='binary_crossentropy',
optimizer=RMSprop(lr=0.001),
metrics=['accuracy'])
return model
model = do_modeling()
#10. Data preporcessing
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# All images will be rescaled by 1./255
train_datagen = ImageDataGenerator(rescale=1/255)
# Flow training images in batches of 128 using train_datagen generator
train_generator = train_datagen.flow_from_directory(
'c:/tmp/horse-or-human/', # This is the source directory for training images
target_size=(300, 300), # All images will be resized to 300x300
batch_size=128,
# Since we use binary_crossentropy loss, we need binary labels
class_mode='binary')
#11. Training
history = model.fit(
train_generator,
steps_per_epoch=8,
epochs=15,
verbose=1)
#12. Running the model
import numpy as np
from google.colab import files
from keras.preprocessing import image
def run_model():
uploaded = files.upload()
for fn in uploaded.keys():
# predicting images
path = '/content/' + fn
img = image.load_img(path, target_size=(300, 300))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
images = np.vstack([x])
classes = model.predict(images, batch_size=10)
print(classes[0])
if classes[0] > 0.5:
print(fn + " is a human")
else:
print(fn + " is a horse")
# run_model()
#13. Visualizing
import numpy as np
import random
from tensorflow.keras.preprocessing.image import img_to_array, load_img
def do_visulaizing():
# Let's define a new Model that will take an image as input, and will output
# intermediate representations for all layers in the previous model after
# the first.
successive_outputs = [layer.output for layer in model.layers[1:]]
# visualization_model = Model(img_input, successive_outputs)
visualization_model = tf.keras.models.Model(inputs=model.input, outputs=successive_outputs)
# Let's prepare a random input image from the training set.
horse_img_files = [os.path.join(train_horse_dir, f) for f in train_horse_names]
human_img_files = [os.path.join(train_human_dir, f) for f in train_human_names]
img_path = random.choice(horse_img_files + human_img_files)
img = load_img(img_path, target_size=(300, 300)) # this is a PIL image
x = img_to_array(img) # Numpy array with shape (150, 150, 3)
x = x.reshape((1,) + x.shape) # Numpy array with shape (1, 150, 150, 3)
# Rescale by 1/255
x /= 255
# Let's run our image through our network, thus obtaining all
# intermediate representations for this image.
successive_feature_maps = visualization_model.predict(x)
# These are the names of the layers, so can have them as part of our plot
layer_names = [layer.name for layer in model.layers]
# Now let's display our representations
for layer_name, feature_map in zip(layer_names, successive_feature_maps):
if len(feature_map.shape) == 4:
# Just do this for the conv / maxpool layers, not the fully-connected layers
n_features = feature_map.shape[-1] # number of features in feature map
# The feature map has shape (1, size, size, n_features)
size = feature_map.shape[1]
# We will tile our images in this matrix
display_grid = np.zeros((size, size * n_features))
for i in range(n_features):
# Postprocess the feature to make it visually palatable
x = feature_map[0, :, :, i]
x -= x.mean()
x /= x.std()
x *= 64
x += 128
x = np.clip(x, 0, 255).astype('uint8')
# We'll tile each filter into this big horizontal grid
display_grid[:, i * size: (i + 1) * size] = x
# Display the grid
scale = 20. / n_features
plt.figure(figsize=(scale * n_features, scale))
plt.title(layer_name)
plt.grid(False)
plt.imshow(display_grid, aspect='auto', cmap='viridis')
do_visulaizing()
반응형
'Information > 구글 텐서플로우 자격증 따기' 카테고리의 다른 글
[코세라 강좌]3주차 - 이론(2/2) (0) | 2020.05.30 |
---|---|
[코세라 강좌] 3주차 - 이론(1/2) (0) | 2020.05.27 |
[코세라 강좌] 2주차 - 실습(2/2) (0) | 2020.05.27 |
[코세라 강좌] 2주차 - 실습(1/2) (0) | 2020.05.27 |
[코세라 강좌] 1주차 - 실습 (0) | 2020.05.27 |